

ASX ANNOUNCEMENT

26 September, 2017

EXPLORATION UPDATE: POSITIVE INITIAL FINDINGS

1. Summary Comments

Hexagon Resources Limited (**Hexagon** or the **Company**) is pleased to provide an update on exploration completed during the current field season at its 100% owned McIntosh Flake Graphite Project located in northern Western Australia.

Exploration activities, focussed on advancing the feasibility study and continuing to assess and demonstrate the large scale potential of the Project area, consisted of:

- drilling at the Longtom and Barracuda deposits to generate metallurgical samples, geotechnical data and confirm/upgrade some areas of the current Mineral Resource;
- reconnaissance rock chip sampling across high priority targets identified by airborne EM in the eastern prospects; and
- continuing the negotiation process with the native title groups in regard to the Mining Lease applications and access to explore the new high priority targets.

Highlights from the drilling program include wide, up to 15 metre (true width) intersections of graphitic bearing rocks along a continuous 1.8km strike length from the current Longtom resource. A very positive outcome from the rock chip program was the identification of outcropping graphitic schist at the Mahi Mahi and Threadfin prospects, which have now been confirmed as high priority areas. These lie in close proximity to the Copernicus nickel mine haul road.

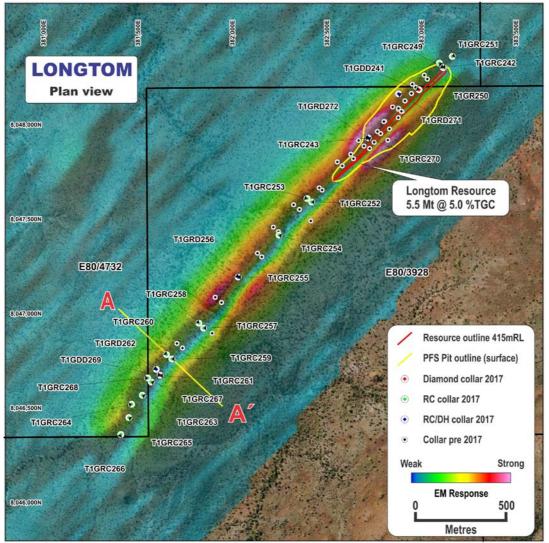
Hexagon's Managing Director, Mike Rosenstreich commented "Shane and his team have done an outstanding job executing a well targeted program to enable us to upgrade the resource size at Longtom and resource classification at Barracuda whilst also providing the necessary samples to carry out further metallurgical test work.

We need a lot of sample for those tests, which are progressing on two fronts; 1 the primary flotation flow sheet where we consider major improvements are possible to improve product quality and diversity and 2 – secondary downstream processing where we are about to embark on a very exciting test work program to follow-up on the initial encouraging battery test outcomes reported recently.

Coming back to the geology - I am really excited how *boots on the ground* have found outcropping graphitic schist indicating very shallow mineralisation and so close to the main haul road. This is great technical support to the previously announced global Exploration Target¹, which underpins our view of the large scale of the McIntosh Project.

1. Please refer ASX Report 12 April 2017 for full details. Also please note - **Cautionary Statement:** The potential quantity and grade of the Exploration Targets is conceptual in nature, there has been insufficient exploration work to estimate a mineral resource and it is uncertain if further exploration will result in defining a mineral resource.

2. Drill Program


Drilling was completed using a multipurpose drill rig commencing in July and finishing in August, 2017. A total of 2,306.3 metres were drilled across the Longtom and Barracuda deposits consisting of 1,968 metres of reverse circulation (**RC**) and 368.3 metres diamond drill core (**DD**) as summarised in Table 1.

Prospect	Hole Type	Number of Hole	Metres Drilled
David La	DD	2	102.4
Barracuda	RC	3	228
	Total	5	330.4
	DD	2	101.2
Longtom	RC	21	1418
-	RCD	4	456.7
	Total	27	1975.9
Tot	Total		2306.3

Table 1: Drill Hole Summary

RCD – Combination of RC precollar and diamond tail.

Figure 1. Longtom collar plan showing current resource and optimised pit outline underlain by late time channel VTEM survey image.

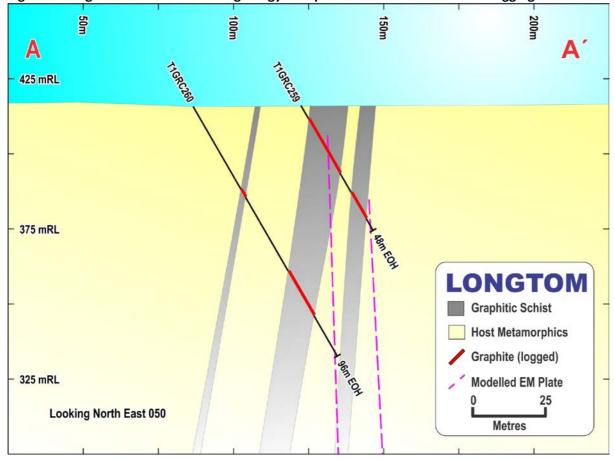
Confined to heritage cleared areas, a modest drill program was designed to test along strike of the Longtom resource and provide suitable material for metallurgical test work to be carried out at both the Longtom and Barracuda deposits.

The majority of the drilling was completed at Longtom along strike from the current resource, which equates to approximately 30% of identified prospective strike length (Figure 1) based on existing drilling and modelled EM responses from a VTEM survey flown by Hexagon in late 2014. Graphite bearing rocks were intersected at Longtom with projected true widths of 5 to 15 metres (Figure 2) along a continuous graphitic horizon with a strike length of approximately 1,800 metres south west of the current resource.

Drilling was completed on a spacing of 80 metres along and 40 metres across strike, so as to provide the necessary data coverage to support resource calculations based on existing knowledge should the returned results warrant. A total of 265.9 metres of HQ₃ core was drilled to provide material for metallurgical test work, in compliance with JORC Clause 49 and QAQC coverage.

A small programme of five holes for 330.4m consisting of 102.4m diamond and 228m RC was drilled at Barracuda. This programme focused on the existing inferred resource (Figure 4) to provide additional information; data density, QAQC and metallurgical, to support a potential upgrade in resource classification. Graphite bearing horizons were intersected where expected.

All RC samples have been submitted for analysis, whilst the core is still being processed.



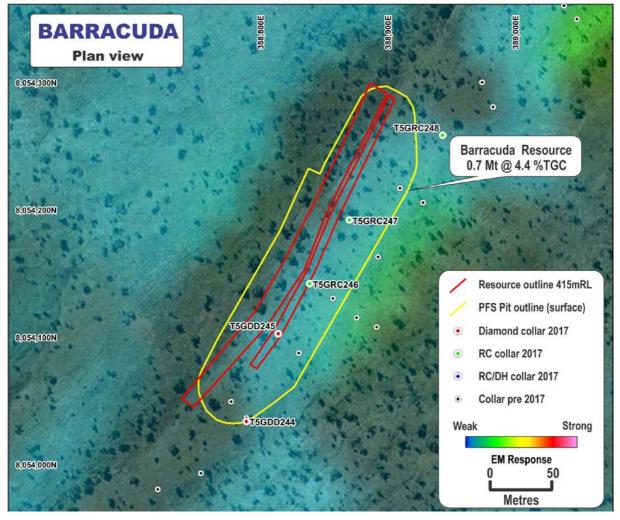

Figure 2. Longtom cross-section with geology interpretation based on drill hole logging.

Figure 3. Graphitic schist intersected in drill hole T1GRD262, which is located approximately 1,400 metres along strike from the edge of the current Longtom resource.

Figure 4. Barracuda collar plan showing current resource and optimised pit outline underlain by late time channel VTEM survey image.

3. Eastern Prospects – Reconnaissance Rock Chip Programme

A first pass reconnaissance field visit was carried out across high priority targets; Mahi, Threadfin and Marlin, identified from the Xcite EM survey completed in 2016. Outcropping graphitic schist was identified coincident to modelled conductive plates where plates have been modelled to surface (Figure 5). For areas where the modelled plates don't reach the surface, i.e. southern plates of Mahi, strongly deformed metasediments with dip orientations indicating anticlinal structures compare favourably with Hexagon's geological interpretation. This interpretation relies on metasediments being subjected to high grade metamorphism and structural deformation to promote flake graphite mineralisation.

Selected rock chip samples have been submitted for multi-element assay and petrographic analysis.

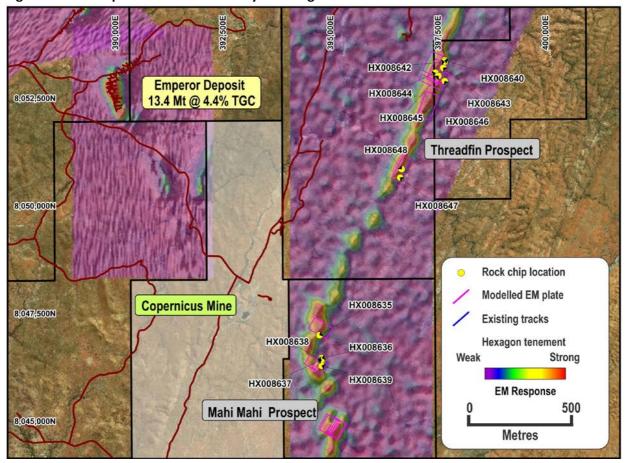
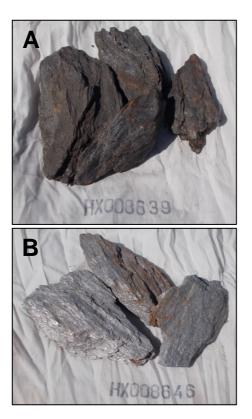



Figure 5. Rock chip locations underlain by EM image

Figure 6. A) Graphitic schist from Mahi Mahi, B) Graphitic Schist from Threadfin, and C) drainage cutting graphitic schist unit (approximately 15 metres wide) at Threadfin.

4. Stakeholder Negotiations

Hexagon is continuing a constructive engagement with Native Title claimant groups as part of the negotiation process for the Mining Lease applications and heritage clearance process. Further meetings are planned in October to ensure the process maintains momentum and that Hexagon is able to gain access to identified high priority targets for drill testing in the next field season.

For further information, please contact:

Mike Rosenstreich Managing Director Hexagon Resources Limited Miker@hexagonresources.com +61 8 6244 0349 David Ikin Senior Account Director Professional Public Relations David.ikin@ppr.com.au + 61 408 438 772

About Graphite

Graphite is a key component in the anode of lithium-ion batteries; indeed, most batteries contain significantly more graphite than lithium (in the cathode). Traditional graphite demand has been driven largely by the steel industry and dominated by production from China. Current modest demand of 7% of graphite for batteries is expected to increase dramatically driven by unprecedented interest in energy storage for electric cars, scooters and renewable energy. Demand for Expandable Graphite for use in tech-applications, electromagnetic shielding and fire retardants is also experiencing a strong surge in demand.

About Hexagon Resources Ltd

Hexagon is ideally placed to take advantage of these favourable economics developing its large scale McIntosh Project in a stable political environment to meet this rising demand.

Hexagon Resources Ltd (**ASX; HXG**) is an Australian listed mineral development company seeking to produce a high purity graphite for use in lithium ion batteries and other high-tech applications from its McIntosh Flake Graphite Project located in northern Western Australia.

A Prefeasibility Study was completed in May 2017 which confirmed the technical and financial viability of the McIntosh Project and provides a significant step to the commercialisation of the project. The McIntosh Project is located close to roads, infrastructure and a suitable port "facing" the expanding technology manufacturing markets in SE Asia. Located in the stable geopolitical environment of Australia and underpinned by large scale resource potential – this project offers customers long-term stable supply of essential raw materials in batteries and other high-tech applications.

Competent Person

The information within this report that relates to exploration results, Exploration Target Estimates, geological data and Mineral Resources at the McIntosh Project is based on information compiled by Mr Shane Tomlinson and Mr Mike Rosenstreich who are both employees of the Company. Mr Rosenstreich is a Fellow of The Australasian Institute of Mining and Metallurgy and Mr Tomlinson is a Member of the Australian Institute of Geoscientists. They both, individually have sufficient experience relevant to the styles of mineralisation and types of deposits under consideration and to the activities currently being undertaken to qualify as a Competent Person(s) as defined in the 2012 edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves and they consent to the inclusion of this information in the form and context in which it appears in this report.

Appendix 1. JORC Table 1 Section 1 Sampling techniques and Data

Criteria	JORC Code Explanation	Commentary
Sampling		1. Reverse Circulation
techniques	sampling	 RC drilling used high pressure air and a
coninques		
	Include reference to	riffle splitter to collect samples.
		 Samples were collected at one-metre
	sample representivity and	intervals.
		 All graphitic intervals were submitted
	any measurement tools or	for analyses.
	systems used.	 Duplicate and standards were included
		and sent for analysis with samples
		Sampling was guided by Hexagon's
		protocols and QA/QC procedures.
		 Samples were sent to the ALS
		laboratory in Perth for assay
		preparation and then sent to ALS in
		Brisbane for Total Graphitic Carbor
		(TGC) analysis.
		 All samples were pulverised to bette then 25% proving 75mm with a 100
		than 85% passing 75µm with a 10g
		aliquot taken for assay.
		 RC drilling samples of 3 to 5kg weigh
		were shipped to the laboratory in plastic
		bags; samples were pulverised and
		milled for assay.
		2. Diamond Drilling
		 Drill samples in this program were
		collected based on geology at 1m
		intervals.
		 Core samples were quarter split HQ3
		core. Core was cut using a diamond
		bladed saw and sent to the ALS
		laboratory in Perth for assay
		preparation and then to ALS in
		Brisbane for Total Graphitic Carbor
		(TGC) analysis.
		• All samples were pulverised to bette
		than 85% passing 75µm with a 10g
		aliquot taken for assay.
		 Duplicate samples, CRM standards and
		blank material (brickies sand) were
		used during the drill programs
		Sampling was guided by Hexagon's
		protocols and QA/QC procedures.
		3. Rock Chip Sampling
		 Samples were collected from surface
		from outcrop and float in drainage
		systems.
		 Samples were collected based or
		visual inspection of rock for the
		•
		presence of graphite.
		 Sample locations were based on EM
		anomalism represented by modelled
		plates of the strongest responses
		which indicate potential orientation
		extent of graphite bearing units .

	Sample locations are irregular based the limited outcropping graph bearing rocks.	
Drilling Techniques	 Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). RC drill holes (total of 1,646m from holes) – completed with a fa sampling hammer and collect through a riffle splitter. Sam recovery was estimated at percentage of the expected sample state recorded (dry, moist wet), samples tested with 10:1 HCI a for carbonates and graphite surfatiling using an LMP2000 drill rig. Diamond drill holes (total of 203.6m 4 holes) were drilled by Seismic Drill using an LMP2000 drill rig and collect HQ₃ core using a 1.5-3m core ba (depending on ground conditions). 4 holes with RC pre-collars and H diamond tails for a total of 456.7m w drilled. 	ace ted aple able, or acid ace mic for ling ted rrel
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. Method of recording and chip sample substrative nature of the sample bias may have occurred due to preferential loss/gain of fine/coarse material. Method of recording and chip sample substrative nature of the sample bias may have occurred due to preferential loss/gain of fine/coarse material. The sample vas recorded for events and the sample substrative sample bias may have occurred due to preferential loss/gain of fine/coarse material. Core recoveries were measured each run between core blocks a measurements recorded. Core variables and the sample substration of the sample substration and the sample substrating substration and the sample substration and the sample subst	ing ited in a a er. tate rery d in that uity for and vas
Logging	 geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is mineralogical data was recorded for drill holes using a coding syst developed specifically for the Projection Primary and secondary lithologies recorded in addition to textual structure, colour, grain size, alternation type and intensity, estimates of mineralogical data was recorded for drill holes using a coding syst developed specifically for the Projection Primary and secondary lithologies recorded in addition to textual structure, colour, grain size, alternation to textual structure, colour, grain size, alternation to textual structure primary and secondary lithologies recorded in addition to textual structure, colour, grain size, alternation to textual structure primary and secondary lithologies recorded in addition to textual structure primary and secondary lithologies recorded in addition to textual structure primary and secondary lithologies recorded in addition to textual structure primary and secondary lithologies recorded in addition to textual structure primary and secondary lithologies recorded in addition to textual structure primary and secondary lithologies recorded in addition to textual structure primary and secondary lithologies recorded in addition to textual structure primary and secondary lithologies recorded in addition to textual structure primary and secondary lithologies recorded in addition to textual structure primary and secondary lithologies structure primary	ged fied and r all cem ect. are ure, tion

	 nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 sample recovery. The oxidation zone is also recorded. Geological logging is qualitative in nature. Diamond drilling logging also recorded recovery, structure and geotechnical data. Diamond core was orientated using the
		Reflex orientation tool where possible.Core was photographed both dry and wet.
Sub-sample techniques and sample preparation	 If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 RC Drilling All samples were marked with a unique sequential sample number. RC drilling samples were bagged at the drill site in calico bags with a second outer plastic bag to prevent loss of fines. The sample sizes are considered to be appropriate to the grain size of the material being sampled. 1m RC drilling samples were submitted to ALS Perth. The samples were riffle split on a 50:50 basis, with one split pulverised and analysed for Total Graphitic Carbon (TGC), Total Carbon (TC) and Total Sulphur (TS) using a LECO Furnace, and the other split held in storage. For RC samples, standards and field duplicates were inserted at an approximate rate of 1 in every 20 samples collected. Sample preparation: Coarse crush using a jaw crushed to better than 70% passing 6mm. For samples exceeding 3kg received mass, riffle split using a Jones Riffle Splitter 50:50 Pulverise up to 3kg of coarse crushed material to better than 85% passing 75µm particle size Small aliquot (~10g) taken for assay. Diamond Drilling Diamond drill core was cut into half core and one half sawn into quarter core using diamond blade core-saw. Quarter core was used for samples. Samples were sent to ALS in Perth for processing and to ALS in Brisbane for analysis. Sample preparation: Coarse crush using a jaw crushed to better than 70% passing 6mm.

		 Small aliquot (~10g) taken for assay. Rock Chips Coarse crush using a jaw crushed to better than 70% passing 6mm. For samples exceeding 3kg received mass, riffle split using a Jones Riffle Splitter 50:50 Pulverise up to 3kg of coarse crushed material to better than 85% passing 75µm particle size Small aliquot (~10g) taken for assay. Sampling procedures and sample preparation represent industry good practice:
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 protocols and QA/QC procedures. For RC samples, standards and field duplicates were inserted at an approximate rate of 1 in every 20 samples collected. Field duplicates were taken from the coarse reject from processed diamond
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	
Location of Data points	 Accuracy and quality of surveys used to locate drillholes (collar and down- hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	

Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Drill spacing on approximate grids of 40m x 80m through the Longtom deposit and 20m x 50m through the Barracuda deposit. Geological interpretation and mineralisation continuity analysis indicates that data spacing is sufficient for definition of a Mineral Resource.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. At the Longtom deposit, holes generally drilled dipping at -60° perpendicular to the target graphitic schist unit at an orientation of 140°. Holes drilled at the Barracuda deposit were drilled -60° at an orientation of approximately 310° perpendicular to the graphitic schist unit being targeted. Where possible, diamond drill core was orientated using a Reflex ACE tool 9Act II), with α and β angles measured and positioned using a Kenometer. The relationship between the drilling orientation of key mineralised structures is not considered to have introduced a sampling bias.
Sample Security	 The measures taken to ensure sample security. Unique sample number was retained during the whole process RC and diamond samples were placed into calico bags and then into self-sealing plastic bags prior to being put into bulka bags. The bulka bags were then transported by road. RC and diamond samples were sent to the ALS laboratory in Perth for preparations and to ALS in Brisbane for analysis. The sample security is adequate for purpose.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. Field data is managed by an independent data management consultancy Rock Solid Solutions. All data collected was subject to internal review Hexagon's existing resources have been externally audited by Optiro in May 2017

	Section 2 Reporting of Exploration Results				
Criteria	JORC Code explanation	Commentary			
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Drilling at the Longtom deposit occurred on exploration leases E80/3928 and E80/4732. These tenements are held by McIntosh Resources Pty Ltd who is a wholly owned subsidiary of Hexagon Resources. Drilling at the Barracuda deposit occurred on exploration lease E80/3864. This tenement is held by McIntosh Resources Pty Ltd who is a wholly owned subsidiary of Hexagon Resources. Hexagon Resources is the manager of exploration on the McIntosh Project. 			
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 The East Kimberley has been largely explored for base metals and diamonds with no active previous exploration for graphite. Graphite had been noted by Gemutz during regional mapping in the Mabel Downs area for the BMR in 1967, by Rugless mapping and RAB drilling in the vicinity of Melon Patch bore, to the east of the Great Northern Highway in 1993 and has been located during nickel exploration by Australian Anglo American Ltd, Panoramic Resources Ltd and Thundelarra Resources Ltd over the last 20 years. 			
Geology	 Deposit type, geological setting and style of mineralisation. 	 The McIntosh Project graphite schist horizons occur in the high-grade terrain of the Halls Creek Mobile Zone of Western Australia. The host stratigraphy is the Tickalara Metamorphic which extend for approximately 130 km along the western side of the major Halls Creek Fault. The metamorphic rocks reach granulite metamorphic facies under conditions of high-temperature and high pressure although the metamorphic grade in the McIntosh Project area appears to be largely upper amphibolite facies with the presence of key minerals such as sillimanite and evidence of original cordierite. Hexagon has identified potential graphite schist horizons based on GSWA mapping and EM anomalism over a strike length in excess of 15km within the project area, with potential for an additional 35km strike length of 			

		graphite bearing material from lower order EM anomalism.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drillholes: easting and northing of the drillhole collar elevation or RL (elevation above sea level in metres) of the drillhole collar dip and azimuth of the hole down hole length and interception depth hole length. 	 At Longtom a total of 27 holes were drilled; 2 diamond holes for 101.2m, 21 RC holes for 1418m and 4 holes with RC pre-collar and diamond tails for 456.7m. At Barracuda, a total of 5 holes were drilled; 2 diamond holes for 102.4m and 3 RC holes for 228m. Tabulated hole locations and details are reported in the body of the report.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. 	 Metal equivalents are not reported as this is an industrial mineral project where the mineral properties define grade (e.g. flake size and purity).
Relationship between mineralisation widths and intercept lengths	 If the geometry of the mineralisation with respect to the drillhole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect. 	 Mineralised widths at Longtom are estimated to be typically 25m, compared with samples of 1m width. There is a very close relationship between the graphitic schist unit and Total Graphitic Carbon (TGC%) assays. The presence of graphitic schist is clearly evident in both the RC chips and diamond drill core so that the assay widths can be clearly related to the geological logs. The graphitic schist horizon has been interpreted as a steeply dipping unity with thin bands of internal waste. Angled drill holes (generally 60°) have targeted the mineralised unit with the priority to intersect the graphitic schist unit. The interpreted EM data has also allowed for a good indication of unit thickness to be made and applied in areas where the information is not available. Mineralised widths at Barracuda are estimated to be typically between 5m and 20m, compared with samples of 1m width. There is a very close relationship between the graphitic Carbon (TGC%) assays. The presence of graphitic schist is clearly evident in both the RC chips and diamond drill core so that the assay widths can be clearly related to the geological logs. The graphitic schist is clearly evident in both the RC chips and diamond drill core so that the assay widths can be clearly related to the geological logs. The graphitic schist is clearly evident in both the RC chips and diamond drill core so that the assay widths can be clearly related to the geological logs. The graphitic schist horizon has been

Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drillhole collar locations and appropriate sectional views. 	 interpreted a sub vertical unit striking north, north-east. Angled drill holes (generally 60°) have targeted the mineralised unit with the priority to intersect perpendicular to the strike of the graphitic schist horizon. Relevant diagrams have been included within the Mineral Resource report main body of text.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	Exploration assay results are pending.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 The September 2014 VTEM Supermax survey over the McIntosh Flake Graphite Project covered a total of 642 line kilometres and identified a total of 12 high-priority anomalies. Five of these were previously identified by induced polarisation (IP) and historical electromagnetic (EM) techniques and confirmed to be flake graphite schist by geological field mapping, petrographic analysis, rock chip sampling and exploration drilling. VTEM geophysical work was carried out by Geotech Limited with the data validated and processed by Southern Geoscience Consultants (SGC).
Further work	• The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large- scale step-out drilling).	 Use drilling results to increase confidence in the existing resources and subsequently produce resource upgrades where applicable. Test EM anomalies along strike for graphite mineralisation potential. Additional dry density work on core to be carried out on mineralised and background domains. Program to assess moisture content of material.

Appendix 2. Drill hole Summary

Appendix Z. D							
Hole ID	Hole Type	Easting (m)	Northing (m)	R.L. (m)	Dip (°)	Azimuth (°)	Depth EOH (m)
T1GDD241	DD	382991	8048178	420	-60	140	57.2
T1GDD269	DD	381623	8046667	416	-60	140	44
T1GRC242	RC	383117	8048298	420	-60	140	22
T1GRC243	RC	382724	8047922	422	-60	140	12
T1GRC249	RC	383119	8048295	420	-60	140	75
T1GRC250	RC	383099	8048319	419	-60	140	73
T1GRC251	RC	383168	8048354	421	-60	140	83
T1GRC252	RC	382424	8047584	415	-60	140	45
T1GRC253	RC	382400	8047602	413	-60	140	80
T1GRC254	RC	382251	8047408	415	-60	140	57
T1GRC255	RC	382035	8047186	418	-60	140	65
T1GRC257	RC	381852	8046916	417	-60	140	36
T1GRC258	RC	381827	8046943	414	-60	140	87
T1GRC259	RC	381684	8046753	416	-60	140	48
T1GRC260	RC	381656	8046776	416	-60	140	96
T1GRC261	RC	381623	8046665	416	-60	140	42
T1GRC263	RC	381528	8046561	416	-60	140	78
T1GRC264	RC	381471	8046513	417	-50	140	90
T1GRC265	RC	381456	8046442	418	-60	140	78
T1GRC266	RC	381414	8046353	416	-60	140	66
T1GRC267	RC	381576	8046631	417	-60	140	69
T1GRC268	RC	381557	8046652	417	-60	140	108
T1GRC270	RC	382722	8047922	422	-60	140	108
T1GRD256	RCD	382035	8047186	418	-60	140	90
T1GRD262	RCD	381602	8046698	416	-60	140	79.5
T1GRD271	RCD	382884	8048156	422	-60	140	185.2
T1GRD272	RCD	382723	8047923	422	-60	140	102
T5GDD244	DD	388790	8054033	396	-60	310	72.5
T5GDD245	DD	388815	8054102	393	-60	310	29.9
T5GRC246	RC	388839	8054141	392	-60	310	66
T5GRC247	RC	388870	8054191	391	-60	310	66
T5GRC248	RC	388944	8054258	394	-60	300	96

Drill hole collar locations have been surveyed by differential GPS in coordinate system MGA 94 Zone 52

Appendix 3. Rock Chip Locations

Sample ID	East	North	RL	Description
HX008635	394777	8046961	388	Graphitic schist, moderate graphite intensity.
HX008636	394834	8046431	394	Graphitic schist, moderate graphite intensity.
HX008637	394823	8046382	395	Graphitic schist, moderate graphite intensity
HX008638	394824	8046376	396	Graphitic schist, strong graphite alteration.
HX008639	394829	8046250	399	Graphitic schist, strong graphite alteration.
HX008640	397686	8053347	342	Graphitic schist, moderate graphite alteration
HX008641		N/A		QAQC sample
HX008642	397686	8053309	348	Graphitic schist, strong graphite alteration.
HX008643	397654	8053170	341	Graphitic schist, moderate graphite intensity
HX008644	397472	8053057	335	Graphitic schist, strong graphite alteration.
HX008645	397543	8052986	335	Graphitic schist, strong graphite alteration.
HX008646	397688	8052865	334	Graphitic schist, strong graphite alteration.
HX008647	396653	8050621	342	Schist with moderate graphite
HX008648	396687	8050819	340	Schist with moderate graphite

Rock chip locations have been surveyed by handheld GPS in coordinate system MGA 94 Zone 52